“The transposons are the missing link in the path of evolution of multicellular organisms and therefore they are the crucial factor in the process of the overall evolution of life” biologist from the University of Georgia.

“Evolution is a process by which different types of organisms suppose to originated from the primitive ones.”

The prime goal of any species on earth is to survive. For that different alleles are originated into the genome of an organism to survive them in the harsh conditions.

The mutation is one of the forces involved in evolution.

How mutation is originated?

Well, there are so many reasons for the occurrence of mutation but transposons are one of them.

Since the discovery of the transposons in the 1950s, they are treated as a culprit for producing mutations.

The transposons are found in almost all type of organisms and species on the earth, either in the active form or inactive form.

Subscribe Now

Subscribe to nature using this Coupon Code: nat50q219 and get 50% off on your subscription. Limited period offer.

The transposons can be divided into two broad categories:

  1. Class I transposons, a retrotransposon found in almost all eukaryotes.
  2. Class II  transposons, DNA transposon found in prokaryotes.

RNA mediated transposition is performed by the retrotransposons and through the reverse transcription, a newly formed DNA is inserted into the genome.

Contrary, the DNA transposons directly inserted into the target site.

It is believed that the retrotransposons are derived from the retroviruses or are retrovirus in past.

They are labelled as selfish and parasitic peccant to the host genome. They jump from one location to another location and creates new mutations and chromosomal breaks.

Role of transposons in evolution

The image shows the non-replicative manner of replication in which the transposon jumps and inserted into the new location leaving the old location blank.

However, in modern science, the explanation is just a myth.

The transposons are actually an agent that creates new variations in nature, Although, the mechanism of it is still unclear.

It is now proven that some of the transposons are essential for an organism to survive and also, they played an important role in the evolution of a multicellular organism.

Transposons are just a bunch of a junk DNA without an apparent regulatory function in the genome, although they can encode proteins for themselves.

The transposons often called transposable elements are settled in the heterochromatin region of the genome as inactive particles.

The active transposons move across the genome, between the genes and produce new mutations.

In a more scientific language, “ their transposition into the protein-coding DNA sequences possibly diversify the transcriptional signals resulting in loss of function or a faulty protein”.

The meaning of both sentences is the same.

In the present article, for understanding the role of the TEs in the evolution, we have to first understand how it disrupts the gene function?

Read further:

  1. What is colony PCR? 
  2. What is nested PCR?

A gene…

A gene is a functional hereditary unit of an organism, encodes for a particular protein, made up of exons and introns. The coding exons are interspersed by the non-coding introns.

By the exon splicing mechanism, the non-coding introns are removed, forming a pre-mRNA.

It transcribed into the mRNA and forms a protein by translating it.

Role of transposons in evolution

A brief outline of the process of the central dogma.

The moving genetic elements disrupt the function of a gene in several ways.

If a mobile genetic element, a transposon inserted into one of the exons of the coding sequences, ultimately it mutates that exons, not spliced out and the protein cannot be formed.

Such a mechanism induces loss of function mutation.

The scientist has now proved that the TEs are involved not only in the loss of function mutation but also creates new alteration (insertional mutation).

Some of the coding region of transposons inserted directly in the intron and behaves like a fake exon,

That exon is counted for the protein formation and a totally new type of protein is formed from it.

In another way,

The “cut and paste” transposons create a gap or break in a DNA sequence, now, that gap is filled by some of the random nucleotides by the normal replication mechanism of an organism.

Conclusively, it can hinder in the function of a gene by these three different ways.

These explanations favour that transposons generate a new variation, a new allele and viz a new protein

“The allelic variation is actually a base for the creation of new phenotype into nature (the evolution).”

Transposable Elements and Evolution

This book contains an in-depth explanation of the role of a transposable element in the evolution.

 Let’s take an example,

This example clears more fundaments on TEs and their role in the evolution of new variations.

How the antibiotic-resistant bacterial species are evolved?

The bacteria did not have an antibiotic gene before the discovery of it. The fact clearly indicates that the gene for antibiotic resistance is evolved.

The antibiotic resistance gene is emerged due to the moving genetic elements present in their genome.

Once the allele emerges, the transposons move it across different bacteria by introducing it in the plasmid.

Even, the resistance gene can be transferred between different genera and species of bacteria. The transposition of  E.coli R-plasmid is found in some of the genera such as SalmonellaHemophilusShigellaProteus and Pasturella.

The transposons result in the deleterious effects but in fact, the actual function of it is to drive evolution, creating new allele.

Furthermore, transposon translocates DNA sequences within a genome, facilitates exon shuffling and repairs double-stranded breaks.

The Tol2 transposons of Fish not only jump but also alters the regulatory region of a gene and creates varieties of phenotype.

The Tol2 Transposon is a DNA transposon, follows the “cut and paste” mechanism for transposition.

In the presence of the Tol2, the fish develops different types of pigmentation patterns, but once the Transpososon is removed, the fish remains albino. Here the Tol2 transposons are work as a pseudogene.

However, if the TOl2 remains in the regulatory region causes a variety of allele for a different type of pigmentation pattern (Koga et al., 2006).

The Tol2 jumps within the regulatory regions and fabricates new variation in a Fish.

Now, the present example is the best explanation for how transposons are involved in the process of evolution.

A regulatory inspector…

“The effect of transposons on a nearby gene is epigenetically regulated” B. McClintock.

She designated them as elements, “Ac/Ds elements” remember!!

Why named it as “elements”?

She postulated that some of the mobile genetic sequences influence the epigenetic profile of the nearby gene and it could be attuned by environmental changes. Which means,

The gene expression is regulated by the transposons.

Role of transposons in evolution

The image shows the mechanism of how the epigenetic profile of a transposon effect the gene expression.

The moving elements move from one location to another location within a genome. If it jumps between an active gene, that gene is down-regulated and protein cannot be formed.

Therefore, by interfering in the protein formation it regulates gene expression.

The transposons are now epigenetically silent, situated in the heterochromatin region of the chromosome. Interestingly, it can on/off the gene expression of a nearby gene by playing with its epigenetic profile.

Even, the epigenetic profile of the transposons is also altering the gene expression. See the figure above,

Role of transposons in evolution

The image shows the replicative mechanism of the transposon.

Let’s take another example,

The stress-responsive elements are the best example of the plausible role of transposons in the evolution of new characters.

For example, in the A. thaliana, the copia like ONSET retrotransposons are resistant to heat. It inserted nearby gene due to heat-responsiveness.

The function of the nearby gene might disrupt but it creates new allele that generates genetic diversity in the  A. thaliana for the heat resistance.

Artificial genetic diversity and resistance species in plants can be generated by using the transposons.

A DNA carrier…

Besides working as a regulatory element, the transposons even transfer DNA sequences from one place to another.

By creating a staggered break, the transposon inserted into a new location.

The break is then filled by the replication with the help of the DNA polymerase (target site duplication).

The duplicative sequences of the target site are generated on both sides of the transposon and moves along with it.

Role of transposons in evolution

A new DNA segment inserted into the active gene through a pair of the transposon.

Read related articles:

  1. Transposase, Transposons and Antibiotic Resistance in Bacteria
  2. Transposase, Transposons and Antibiotic Resistance in Bacteria
  3. Transposons in eukaryotes

A TSD inserted at a new location and ultimately a new variation is originated. The transposons are responsible for the creation of new allele.

So, the transposons itself perform five different functions:

  1. It can carry any of the DNA sequences
  2. It can create new mutations hence new variations
  3. It can regulate gene expressions
  4. Alter gene function through the insertion
  5. Can do chromosomal rearrangements

The genetic force that drives the evolution requires almost all these changes in the genome to drive new variation.

So it is clearly evident that the transposons and transposition process responsible for the evolution of a multicellular organism.

The genome…

The major portion of the genome is made up of the repeated DNA sequences called a junk DNA, can not code for any protein.

A transposon is repeated DNA sequences positioned in the centromeric region of the genome and a major constituent of a heterochromatic region of the genome.

The heterochromatic region of the genome gives the structure to it and hence helps to arrange DNA on the chromosomes.

And this is the reason why non-replicative transposons create nick or cut on the chromosome.

Some of the external resources related to this topic:

Transposable Elements and Evolution Plant Transposable Elements


One important question arises in mind that,

Suppose, if the transposons do not have any significant role, why they are conserved and stored in the genome of an organism?

Although the majority of the transposon sequences are epigenetically silenced through the methylation and other silencing mechanisms, their presence is indeed more important in the genome.